
Case-Driven
Automated
Testing Guide

https://testfort.com

Table of Contents

01. Why bother with automated testing (advantages and trends)?

02. Choosing a Team

03. Developing a Strategy & Setting Objectives

04. Choosing the Right Tools + Netflix Case Study

05. Challenges & Problem Solving

06. Stories of Success and Failure

07. Conclusion: Automated Testing Checklist

Why bother with
automated testing?

Automated testing is trendy and in high-demand, but

is it cost efficient? Can you actually cut costs by using

automated testing tools instead of paying for manual

work? What is the future of automated testing? We try

our best to answer the question of whether the results

are worth the initial effort (TL;DR - Yes).

A manual tester works 8 hours and goes home. Automated testing works
all the time. But does it actually work?
We are not going to say that automated testing is or should be your
number-one option. It doesn't work for each project, and anyone telling
you otherwise is simply wrong. Human intuition is often everything since
there are complex user scenarios to evaluate and predict.
Let's cross these intuitive types of testing of our list right away, before we
get started with building a strategy and assembling a team.

Automated testing DOESN'T WORK for:

Robots are great, but there is a long way to go before algorithms reach the
level of understanding high enough to determine whether something
looks 'pretty'. Same goes for things like haptic feedback or sounds.
Strategic Development and User Patterns
When we create software for humans, it's only humans who can determine
user behavior. How to predict what button a user will press? Will they find it
in the first place? Algorithms might be smart, but they lack intuition.
Humans know humans best.

Interface evaluation

It's not that it's impossible to write an automated test for complex user
scenario, but even if you could, you really shouldn't. Teaching human logic
in a complex action to a machine is a long and tiresome process. Al and
machine learning isn't quite there yet.
Robots are no humans, and often it is a disadvantage. Not all the time
though. Algorithms don't
stress out, never get bored, or lose focus. If a test case requires a number
of dull repetitive actions,
wasting a perfectly good team of manual testers is unreasonable.
That being said, let's see where automated testing is not only helpful but
absolutely necessary.

Testing complex scenarios

Automated testing WORKS for:

You know that situation when only one piece of code is changed but the
functionality stops working altogether? To avoid that
'this-shouldn't-have-happened' situation, regression testing is performed.
You verify that the system works fine after previously made edits, software
patches, or setting changes. It's repetitive work which can and should be
done by machines, not humans.

Regression testing

Here testing team's task is to evaluate whether every software function
works. It's a routine task, but a crucial one - every little operation needs to
be performed, assessed and documented (sometimes multiple times).

Functional Testing

It's not about evaluating the attractiveness of the interface but only about
its functionality. Algorithms will assess whether GUI objects work the way
they were designed to.

GUI Functional Testing

Smoke testing is a type of functionality testing that verifies and assesses
the most important system functionality. Test cases analyze main user
scenarios that necessarily will be performed by actual users.
Every software is like a building. There are cornerstones which work as the
foundation for the entire architecture. If these are broken, there is no point
in moving on to smaller errors. That's why smoke testing is the first to be
done.

Smoke testing

This is the stage where you prepare your project for success. If it gets
popular, you better be sure the product will survive the traffic load. For
that, the automated testing team writes tests to create an environment as
if 10,000, 100,000, 1,000,000 people are using the service at the same time.

Load and performance testing

Let's answer the most important question. Why automate?
Couldn't it all just be performed by a bunch of manual testers?

Just because it could be, doesn't mean it should be. The golden rule of all
tech progress ever achieved says: what could be automated, shouldn't be
done manually. That's the reason we have technology in the first place.
Why bore humans with dull repetitive actions if there are dozens of tools
and frameworks to do the work for them?

Imagine yourself being a manual functional (for instance) tester Every
day, you have dozens of functions to run, assess, and fix what went wrong.
Hundreds of bugs, 8 hours a day, every day. The same bugs. The same
functions. At this point, I wouldn't blame you if you started looking for the
easiest path, the one requiring the least amount of effort on your part. I
also wouldn't blame you if, from time

Algorithms, luckily, do not get tired or bored. This is what makes them not
just a tech-savvy innovation but a necessity.

Will automated testing replace manual testing?

Not fully but likely, in most testing fields, teams will switch to automation.
When you work with technology on daily basis, automation is a logical
thing to do. Also, the number of testing market and testing cases grows
every year.

According to Statista.com, in 2019, the proportion of budget allocated
to quality assurances and testing as a percentage of IT spend will top
40%. Just for comparison, in 2013, it was only 18%.

First-chapter checklist
Not every type of testing can be automated. If you hear or read it
somewhere, don't buy it. There are complex user scenarios which only
humans can create, assess, and understand. These are Interface
Evaluation, Strategic Development, and User Patterns, or assessment
of complex test cases.

There are types of testing where automated testing is absolutely
necessary such as Regression testing, Functional testing, GUI
Functional testing, Smoke testing, Load and Performance testing.

Automated testing is not a trend, it's a reality. With a steady growth of
demand on QA, testers will switch to algorithms instead of performing
manual work.

Automated testing not only saves resources and money but also
improves the work quality. When human testers perform repeated
actions day to day, they get bored and stressed. The product is hardly
better for it.

Automated testing won't fully replace manual but automation will
surpass manual work. The earlier you start implementing automation,
the faster you'll adapt to new demands of the
technology market.

Three takeaways from the chapter:

Take our list of types of testing that absolutely have to be automated
and analyze your expenses on the manual testing. Sum it up — it'll
help you to compare your possible expenses for automated testing to
your current ones as we move further.

Look at the testing reports and glance through test cases your
manual testers deal with. Find the ones that you think could be
automated. Later we'll see how.

Analyze the types of testing that couldn't be automated. How often do
you perform them? How many manual testers do you need for the
process? Later we'll talk how manual and automated testers will
cooperate so you will definitely need this data.

It's time to choose
a team

How do you determine whether an automated testing

team is a good one? If you want to switch to

automated testing, is it more reasonable to find an

automated testing team or invite an automation

expert to work with your manual testers? We describe

our experience in both cases, and also talk about our

journey to automated testing.

A team is what makes difference between a great test automation
and a poor one. No matter how you build a right strategy or set the
objectives, it's them who will do the work.

When choosing automated testers, you have two routes to go

Route #1 — Educating your manual testers

We always like to work with people we know and trust. People who already
know the project and have worked with the code are faster, don't ask
redundant questions, and already believe in the product. There is only one
issue: what if they have no experience in automation?

As far as education usually goes, we all know it requires time and/or.
Therefore, before making any decisions, think whether the investment
won't be wasted. As we've seen from our own experience, going this way is
reasonable if we talk about an in-house team. In this case, you are likely to
benefit from their skills a lot more often than just this once.

If it's a remote team, making this investment is a huge risk. It might be best
to find another team of experienced automated testers (we'll get to this
later in the chapter).

Also, Route #1 is a long-run solution. If you need automated testing right
here and right now —opt for hiring another team, dedicated specifically to
automation. However, as a long-term investment, educating is truly
reasonable.

When to go this way?

The problem

You have a good team of manual testers. Maybe, these are in-house
testers or an outsourcing team you've been working with for a long time.
They know the project and the product, you have good communication
and a well-designed management process. However, they have no
automated testing background whatsoever. What to do?

Set a goal

You don't need all your manual testers to receive automation skills.
Choose a few testers of the team and focus on giving them all the
necessary knowledge.

How to start?

Before making investments, prepare the team. After all, it's them who will
master a new skill and it's also their careers we are talking about.
Therefore, take into account the following aspects:

Whole team commitment

Make sure you are not the only person interested in the process. You are
about to give your testers new skills and knowledge, and they should be as
excited about it, as you are.

Talk to the team, explain that learning process is a huge investment from
both sides, and while you are going to provide all the resources, they have
to put up extra hours and work longer days.

Assessing possibilities

Don't aim to give each of your manual testers the extensive automation
background. You can form a team of volunteers who are willing to stay up
late writing unit tests and experimenting with frameworks. You don't need
every tester to be on board.

Interest in automation

Don't confuse this with commitment. Testers can be very committed to the
team and its goals but that doesn't mean a good relationship with
automation. Some people just don't have it in them — and it's okay. Talk to
project manager and testers themselves. Maybe you'll find out some of
them are happy working only manually.

You'll need a supervisor
The easiest and best-proven way to switch from manual to automated
testing is to invite an automation expert and have them oversee the
process. Invite an experienced automated tester and discuss the following
issues:

● Goals and strategy. Most likely, you already have a project where
you need automated testing skills. Invite your ‘supervisor’ to take a
look at it and define most pressing issues.

● Necessary instruments. To switch to automation, you need tools and
frameworks. Instead of experimenting with it on your own, better use
the advice of an experienced automated tester.

● Cost. Switching to automation will take time and resources (you'll
need a bunch of software and hardware to set up the environment
as well as frameworks and drivers to automate the tests) so discuss
it beforehand.

● Management details. Most likely, you can't freeze all your projects
and tasks just so testers can learn. You still have to take care of many
pressing issues and waiting is not an option. That's why we
recommend to start the switching process with a few testers, then
gradually increasing their number.

Develop the right metrics
How do you know the team is going the right way? How to determine
whether all these efforts and investments really improve the process?
There is only one way to know for sure and that is building metrics.

Metric ff1 — Test count
Quantity is important but it doesn't stand for quality. Control the
interaction of every test. By the end of every week, you should get a report
with color-tagged test results (green tag if everything went well, red — if a
test failed).

Metric ff3 — Time and resource management
Evaluating the results is great but don't forget to compare them to
expenses. How much you gained compared to what was spent? Is this
number higher? Is there a chance it'll increase over time? If the answer to
these questions is yes, you are going the right way.

Case in point: Microsoft Azure Automated Testing Strategy
Article “Software testing at scale to increase velocity” on Microsoft official
blog describes the algorithms company used to minimize software testing
expenses, including beforehand planning, measuring results and
comparing outcomes. To minimize risks, the team maintained the
comprehensive comparative report, using the criteria we described
above.

Route #2 — Find an automated testing team

Turning manual testers to automated ones is not always reasonable. If
you have one project that you'd like to automate, it's much easier to
choose a ’ready-to-use’ team.

However, if in the previous case you cooperate with testers you already
know and trust, here you have the entire getting-to-know-each-other
journey ahead. That's why it's crucial to put a lot of consideration before
opting for an automated testing team.

These are 5 takeaways for picking an automated testing team. All of these
insights were proven by our cases and experience, some of them — by
mistakes and failures. To avoid those, learn our lessons.

A dedicated team needs guidance and control. For that, hire a team with
1-2 architects. They will be responsible for managing the process, building
the strategy and evaluating the results. Even if you plan on hiring a small
team of 5 testers, having an experienced automation architect makes a
real difference.

Takeaway #1 — Hire a team with Automation Architect

The core difference between manual and automated testing is that
automation is almost software development. To design tools and
frameworks, you need to follow best development practices, including
regular code reviews, pattern design, constant support, and maintenance.
Make sure your team knows and uses best development practices and
applies them in automation.

Takeaway #2 — Look for a team with software development expertise

Talking about software automation, we discuss the importance of the right
instruments. The truth is, no tool is perfect. It might glitch and miss bugs,
and it might not know an important for your project scenario. Every tool
should be adapted specifically to your project and that is something your
team will take care of. That's just another reason of why investing in testers
matters more than frameworks and instruments.

Takeaway #3— Look for a team with software development expertise

If your team knows Java, they'll be more comfortable working with a tool
that offers Java to write scripts. However, if your project is powered by
C++, better pick a team that knows C++.

Takeaway #4— Select a tool considering testers' capacities and your
project's needs

The priorities in automated testing are: project — team — tools. You start
by analyzing your product, choose a team that can solve problems, and
pick tools these testers will be comfortable with. We always share our
experience of working with tools with our clients, it makes the tool selection
easier.

Takeaway #5— Product comes first

However, it all starts with a product. Only knowing it well, you can set the
right goal, find capable testers, and choose tools. If it's a web page or an
app, know what browsers you want it to support. If that's an application,
think about functions and OSs. The more you know about technologies
used in development, the easier it gets to build the testing strategy.

Three takeaways from the chapter:

What ratings to use to find a trustworthy partner? Good testing teams
are constantly featured in Clutch and international testing awards

Do rise management When partnering and outsourcing testing team,
analyze such factors as location, time and cultural differences,
security challenges, and remote communication.

Don't automate 4-5 types of testing at once. Start with one (like
regression testing) then gradually automate new scenarios.

Second-chapter checklist
You have two options of cooperation with an automated testing team:
1) educating manual testers; 2) partnering a dedicated team of
automated testers. If you have a strong in-house team, opt for the
first option. In all other cases, go for the second one.

Educating testers is a time-consuming process but it pays off in a
long-term perspective. While switching from manual testing to
automation, have an expert to oversee the process.

If you look for a ‘ready-to-use’ automated testing team, make sure
their skills correspond to your product needs. For example, if your app
is powered by C++, make sure testers know C++ as well.

Check out rating and awards. This way, you minimize the risk of
partnering an untrustworthy team.

It's time to build a strategy
and set objectives

You've decided to move ahead with automated testing and

have chosen a team. Now, it's time to develop a strategy.

Automated testing works great if it's planned well. Here we'll

give you practical takeaways on building strategy,

determining the efficiency, cover the topic of estimations and

possible risks (and ways how they can be avoided).

Congrats, you decided to automate your testing and even
gathered the team (well, almost). Now, you all have another thing
to figure out, something that determines your successes and
setbacks. Strategy.

There is no result without planning. It's not about predicting everything but
rather defining challenges and finding solutions.

Let's start from the beginning.
● What defines successful automated testing?
● Well-built management strategy and its implementation The right

selections of team, tools, software, and hardware
● Communication between team members and leaders.

Fish rots from its head and failures in automated testing come from bad
management. Inadequate communications, objectives, deadlines — any
of these can lead to big loses.

Management matters

To achieve something, know what to achieve. All these vague objectives
like ‘we need cheaper and faster’ won't cut it. Set specific goals like
‘automate X tests’, ‘run Y tests successfully’. Set goals that are measurable.

Automation Goals

When building a strategy for automated testing, you have two types of
goals. The first one is about testing — you need tests to be run successfully
and work through as many scenarios as possible.

The goals for testing and automation are not the same

Automation doesn't equal automated testing. Why? Because it's not the
testing itself, it's the way of doing testing. Here you need to focus on how
many tests you automated, what tools were used in the process, how
much time did the entire process take.

The second goal is regarding automation.

Goals for Automated
Testing

Goals
for Automation

The ultimate result we want to
achieve (like find X of bugs)

What do we need to achieve
those ultimate results (what tests
do we need to automate)?

Another ultimate result we want
to achieve

How many, in what time frame,
with what resources?

Also, set specific objectives for each type of testing. Goals like ‘find lots of
bugs’ won't work, for example, with Regression Testing because that's not
how this type of testing works. In regression testing, you don't look for bugs,
you make sure previous changes didn't affect the entire system. In most
cases, there will be little or no bugs found, and it doesn't mean the test is
wrong, that's just the way it works.

We already discussed how important it is to have a supervising architect
who will oversee the process, check the results of performance, talk to
developers and the product owner. However, there is more to guiding
management than just finding an experienced architect.

Providing time and resources

Automated testing is not done in a day. If you have never run automated
tests before, it means, you'll need to pick tools, find the right hardware (if
you are working with the outsourcing team, make sure they have it), and,
most importantly, give time to build an optimize the process.

Guide and teach

Build and maintain automation regime

You need a system, a schedule with planned tasks and defined objectives.
Plan every week of the testing process, determining what tests you'll
automate during these seven days and what are the expected objectives.
If the outcomes are successful, you move onto new types of testing or
more complicated user scenarios. If they are not, communicate with team
managers and find out what went wrong.

Talk about your product and business overall

Testing always stands together with marketing. Your testing team works
for the end result and directly influences the way users will perceive the
product. Make sure all team understands the end benefit: what will their
actions change not only in the code or architecture but at the bigger
scale? How will it make your business stronger? Also, these are questions
to discuss with a team manager. If there is no clear answer, it might be
just time to consider switching to another vendor.

Don't rush the result

Automated testing is (supposed to be) faster. Not at the beginning. Give
your team time to structure the process and adapt tools. Don't forget that
automated testing is, first of all, a long-term investment, not ’I want it for
yesterday’ kind of approach.

There is a word in the automated testing community that tools determine
90% or even 99% of automation success. It's a popular misconception —
don't buy it. Taking an Open Source tool just because it's free is not how
you get results.

Profit requires investments. In automated testing, investing means
experimenting with tools and frameworks until you find the instrument that
suits your product best. If you put nothing, you get nothing.

Measure investments, measure results

But if you put everything, this alone guarantees you nothing as well. To
make sure investments won't get wasted, it's important to manage all
expenses and profits. You already have goals, now you have to evaluate
the results — and make sure they comply with objectives.

Rule #1 - Estimate ROI at the beginning of automation
How to know whether you save more resources than you spend? The profit
is usually calculated by hours: you compare the time spent on automated
testing to the time taken to run these same tests manually. Then you
count the cost of one hour and compare to previously made investments.
Are you in the black? If yes, you are doing it right.

Rule #2 - Give your automation effort at least a month to be fully
established
The truth is, if you count ROI at the first weeks of automated testing, it will
be negative. At the beginning, running automated tests takes quite a
while. It's only later, in a few months, you can see the true picture. Every
case and every team has unique approach so consult your architects
before starting automation. They should refer to previous experience and
give you a timeframe.

Rule #3 - Compare ROI in stable intervals
If it's every week then it's always every week. If you are doing monthly
reports, they should come out every month. The consistency in metrics
gives you a clear picture.

Rule #4 - Don't confuse ROI with benefits
If you just put a check in your objectives list, it won't equal ROI. ROI means
comparison between investments and profit, not just goals evaluation.

Rule #5 - At the beginning, ROI can be negative
Don't aim high right away. Automated testing can't be implemented in a
day so expecting quick results is pointless.

When IBM analyzed the fundamentals of creating a
successful testing strategy in their white paper, they identify
four main problems that projects face:

Case in Point: IBM Testing Strategy Takeaways

● Non-extensible automation architecture. Developing a tool, testers
and developers have to think not about just one particular user
scenario but constantly keep the bigger picture in mind. If you have
several test teams working on the project, take into account all their
requirements.

● Duplication of efforts. If you have automated and manual testing
teams working on the product simultaneously, the lack of proper
coordination of efforts leads to the same actions performed twice. If
you have already developed a similar solution, use already written
tests.

● Writing tools from scratch. It's not a mistake by its nature yet now,
when there are so many ready-to-go tools available, writing the new
ones from the very beginning is most often a waste of resources.
Monitor existing libraries and you'll most likely find something that
suits your needs.

● The incapability to spread knowledge. We've already mentioned this
in the ebook and IBM only proves what was said. It's crucial to
manage and communicate every time and action or you will miss
crucial tiny details that are not that tiny when it comes to
maintenance.

Three takeaways from the chapter:

Make a spreadsheet with separate goals for automation and
automated testing. Remember to avoid confusing these two.

Develop separate goals for each type of testing.

Communicate business benefits to your team. They should
understand the project not only from a technical perspective but also
its marketing objectives.

Third-chapter checklist
Management means measuring. Develop metrics at the beginning of
automation. To check the efficiency of automation, check the number
of automated tests.

Evaluate clear goals. It's not just finding more bugs but find 100, 200
bugs, run 50 tests — and so on.
Keep hour count. Compare the number of hours spent on automated
and manual testing. If your project fails at the beginning, it's okay.
Give it a few months.

Make sure your vendor is honest. Honesty means to talk about
possible failures as well as about expected successes.

Don't automate urgent projects if you are only at the beginning of
automation. It won't be as quick as you'll need it to be.

Choosing the right
tools

Each project will require its own set of tools. The market of

automated testing is huge, and it's easy to get lost. We will

help you figure out an algorithm for how to choose what fits

best for you specifically. We’ll oversee cases from worldwide

enterprises like Netflix and our own projects.

Choosing automated testing tool is important. The entire purpose
of automation depends on how well we combine testing tools to
achieve the defined objectives.

Choosing automated testing tool is important. The entire purpose of
automation depends on how well we combine testing tools to achieve the
defined objectives.

Testing tools are supposed to exclude the chance of human error. No
mistakes can be made. Do you know what happens when something goes
wrong?

This happened in November of 2000 at the National Cancer Institute.
Therapy planning software miscalculated the dosage of radiation for
cancer patients. Doctors found a ’hack’ that allowed them to make
program work faster and repeatedly gave patients twice more radiation.
Why did it happen? Because software development testers didn't expect
that the platform functionality could be used the wrong way, neither did
they see a crucial architectural flaw that led to miscalculations. The
mistake was made, and people died because of it.
Of course, stakes are not always this high. But testers can make mistakes
and the task of automated tools is to make sure these accidents don't
happen.

The tool alone doesn't guarantee you anything
It's not just about having a professional team (as we already discussed).
It's also about adapting the instrument to your project, making sure it
analyzes all possible scenarios and prevents such mistakes.

Having a right tool makes optimization easier. The question is, how can we
know which one is right?

All of them seem equally fit for the project unless you know what you look
for. So, the first task is to define the objectives for automated tools. What
do you want it to do?

The goals can be:
● Manage tests, requirements, incidents, and defects
● Reporting and monitoring test execution
● Improve the speed and reduce the cost in X times
● Support manual testing in test planning, design, and reporting.

Don't expect one tool to cover all these objectives
Gartner says, that companies usually use tools from 3-4 different
companies. Each tool falls into one of the following categories:
● It supports a specific technology
● It's responsible for a particular type of testing
● It reduces costs and makes testing faster.

Don't look for that one awesome tool that will do it all. It doesn't exist. Start
with analyzing possible benefits and risks.

Possible Risks
The main enemy of automated testing are unrealistic expectations. Don't
expect testing tools to do more that they can. Write clear goals and
identify your needs (you already know how to do this if you've read this
far) so you won't expect the impossible from the tool.
This is the list of risks identified by ISTQB (and we agree completely: these
are indeed the most common concerns):
● Underestimating the time, cost and effort for the initial introduction of

a tool;
● Underestimating the time and effort needed to achieve significant

and continuing benefits of
● the tool;
● Underestimating the effort required to maintain the test assets

generated by the tool;
● Over reliance on the tool.

What do you expect from the tool?
It all comes from the project. Project — team — tool, remember? Hence,
before choosing a tool, analyze your project.

1. Is it an application or a web site? Mobile, desktop, web?
2. What technology and language did you use?
3. What kind of testing do you plan to perform?

Write it down.

Type of the
project Specifics

Application Desktop fintech
platform

Language Type of testing

Javascript Unit Testing

Now, come back to your strategy and remember what types of testing you
were planning on automating. You can start with just one (let's say, unit
testing) or do a few simultaneously. If you go for the second option, add it
to your table.

Type of the
project Specifics

Application Desktop fintech
platform

Language Type of testing

Javascript Unit Testing

Application Desktop fintech
platform Javascript Regression

Testing

Now, it'll be way easier for you to find a suitable tool. You know exactly
what you need.
A testing tool for application, a desktop fintech platform, written in Java
Script, for Unit and Regression testing.

When you know exactly what you are looking for, you can ask your
architect and he'll easily give you the answers. Heck, you can even google
it (not the safest approach yet possible). If we worked on such project,
we'd recommend JS Unit or Jasmine for Unit Testing and Test Complete for
Regression Testing.
What if I develop the next project with another language? Would I need a
new tool?

No, not necessarily, If you know that you have other projects written in
different languages that you'd like to automate, look for tools that are
optimized for the languages you use.
For example, Test Complete that we recommended for regression testing,
works not only with JS but also with C++ Script, C//Script, VB Script, Python,
JScript, and DelphiScript.
You don't need another tool for other languages. Just plan it all
beforehand and find a universal solution.

How to choose between 2-3 tools?
As you see, for one language and testing type there are dozens of tools.
After you defined 2-5 options (the way we showed you just now), compare
the options. You need to analyze the main features and put it all together.

What are the most important functions to pay attention to?
● Support of Windows desktop, Web, RIA, and mobile applications
● Support not only of different operating systems but also of various OS

versions Mobile devices' support
● The ability to work with different types of testing (so you don't need a

new tool for each type of testing). One tool should cover 2-4 types of
testing.

● The simplicity of writing tests. You don't always have developers
nearby or an experienced architect around to oversee every test.

● Automated test scripting. Scripts allow writing more powerful tests
much faster. Make sure the tool uses standard languages like JScript.
That makes it easier for a team to get the hang of the tool as soon as
possible.

● Recording test results and documenting them in brief clear reports.
When a tool has a built-in documentation feature, it's easier to
control and evaluate the process.

● Creating cross-browser and cross-platform tests. Writing unique
scenarios for each OS and browser is a great pain in the neck — and
a hole in the budget. Working with a tool that automatically adapts
one test to different platforms is a more comfortable solution.

Of course, these goals depend entirely on your project nature. If you don't
build cross-platform products, this feature is not your priority and go from
there.

Case in Point: Netflix and its Open Source strategy

With an extensive growth of the Open Source community, companies start
using assistance of
code-sharing platforms. That's precisely how Netflix strengthened its tech
power by allowing testers and developers worldwide to contribute to their
automated tools.

During such cooperation, the company developed the following tools:

● Genie is a dynamic, REST-based abstraction to company's different
data processing frameworks.

● Security Monkey identifies system weaknesses in large AWS-based
environments.

● Stethoscope is a web application that collects information from
existing systems management tools (e.g., JAMF or LANDESK} on a
given employee's devices and gives them clear and specific
recommendations for securing their systems.

Three takeaways from the chapter:

Make tables like the ones we did in the chapter to collect all goals for
the tool and compare possible solutions.

Use Gartner and Forrester to stay on top of all latest automation
trends and insights. Also, follow Testfort blog.

If it comes to choosing, always prefer the tool that your team already
worked with. It will make process faster and easier.

Fourth-chapter checklist
Choosing tools is a responsible task. Mistakes in software testing costs
a lot as proven by many cases.

Don't expect to find one goal which will fulfill your needs. Most testing
teams use 3-5 tools for different types of testing, OSs, and
programming languages.

Put clear goals for your tool. What is the project? What are the
expectation in terms of time and resources? Figure it out before
investing in a tool.

Don't trust your tool too much. It matters but the biggest influence on
the project success has your strategy and teamwork.

Determine 3-4 tools that fit the need of your projects and compare
their features.

Give tools time for installation and optimization. It can take a week or
two. But don't take your team's word for it until you saw the reports
and the data to prove it.

The first tool you choose might not be the best for your business. It's
okay, and we'll talk about handling such situations in the following
chapters.

Challenges & problem
solving

We know now that the benefits of automated testing are

huge and they will only grow with time. However, there are

always challenges that you should be prepared to face. We

know this because we already had to solve unpredictable

problems, and you are going to be ready to do the same

thing.

Don't expect automated testing to be easy. It can be effective, production,
profitable, it can be many things, but easy is not one of them. There are
always challenges, there will be less as you get experience, but they are
never going to disappear.

Each testing case is different but as we've seen from our experience, there
are particular issues that always repeat. Let's go over them.

Challenge #1 — Team roles

When you are transferring from manual to automated testing, it's
important to keep in mind that requirements for a test automator are
different than those for manual software testers.

What is the role of a test automaton?

Testing automators are the bridge between testers and testing tools. They
make sure the team's actions and the tools' algorithms are perfectly
synchronized. Basically, a test automator oversees writing, designing, and
maintaining the automation software, while also being in charge of scripts,
additional tools, and the end results of the testing.

That said, a test automator performs functions of both testers and
developers. On one hand — they support testers by coordinating their
actions, solving technical issues, supporting new requirements, etc.

On the other hand, the test automator has direct responsibility for a tool's
efficiency. If code needs to be adapted for a particular project, it's test
automator who handles it. It's essential for them to have good
programming skills.

When it comes to automated testing, a common mistake is confusing
testers and automators. See, not every tester can and should be an
automator. We talked about this earlier in the eBook. Of course, there are
frequent cases when automators perform functions of testers and vice
versa, but mixing these roles often leads to confusion.

Responding to the challenge: define who performs functions of testers and
who is an automator. There can be several automators if they know how
to cooperate with each other. Should we force a non-technical tester to
obtain development skills? No. These experiments usually end with losing a
tester and not getting a good programmer. Let testers stay testers.

Remember what we discussed at the beginning of the book? If testers
don't feel comfortable with automation challenges, give them time to ease
into it.

Challenge #2 — Cooperation with developers

Successful automated testing teams consist of three groups: testers, test
automators, and developers. We already discussed the approaches to
testers and test automators and why they are different. What about
developers?

There are few golden rules to follow when it comes to tester-developer
relationships in automated testing.

Golden Rule #1 — Develop with automated testing in mind

You know why it's best to implement automation as early as possible?
Because you start preparing your project for automation from the very first
lines of code written for your software solution.

When the testing team has a say in development, they can say things like
“Please use standard controls to make further automated testing easier."

This is a small detail. It's easy to implement for most developers. However,
when the time comes for automated testing, these small details (if not
implemented) become a huge pain in the neck for testing automators.

What to do if the project is already developed?

At this point there is usually not much you can change in the project's
architecture. Sure, there are always little code adjustments that can be
made, but nothing significant can be done anymore. Is the hope lost for
such projects?

Of course it's not. The test automation is still possible, but be prepared for
it to be more complicated and take longer. Here's what you can do to ease
the pain:

● Make sure testers have access to all necessary information about the
project: what technologies were used, what are the possible
complications, what functions might cause more trouble than others.
Developers usually have these things documented (if they don't, they
should) and testers will benefit from the insights.

● Schedule daily meetings between testers and developers so testing
team can ask for necessary details before starting their workday.

● When there are significant changes of functionality to be made, both
by developers and testers, this should be discussed beforehand.
Why-haven’t-you-asked issues are expensive to tackle and easy to
avoid if you communicate.

Golden Rule #2 — Responsibility

Make sure both parties take responsibilities for the project, not passing the
blame onto the other party. In fact, a love-hate relationship between
development and testing team can be tackled if they work on same
strategic issues:

● Collect customers insights and explore user journey
● Build stories and discuss project functionality
● Get clear definition of ‘done’ to avoid later criticism
● Adjust definitions of done as testing progresses.

With DevOps around, conversations about sharing responsibility for all
project stages can become overwhelming. But the truth is, successful
automated testing teams have worked with DevOps for a long time. In
automated testing, the concept of DevOps is so natural and so logical that
it's impossible to imagine a strong team working non-DevOps.

Challenge #3 - Choosing a country for outsourcing

As we said, you can either switch some of your manual testers to
automation or outsource the process to an offshore team. Overall it's an
easier method because you work with well-qualified automa ed testers
which reduces the time of adaptation. All of a sudden, the question of
training an internal manual tester in a new workflow and technology is no
longer an issue.

Cost comparison of in-house and outsourced QA

Criterion In-house QA Outsourced QA

Number of programmers

Man hours needed 100 100

Middle QA expert hourly rate 30 $ 10 8

Taxes, bonuses, training + 30 to the salary

Travel cost

Estimated testing cost $ 12k minimum $ 3k + travel cost

The main advantage of outsourcing testing is lower cost, of course

However, there are challenges and important decisions to make. The most
pressing one, as we think, is how to pick a country. It's no secret that there
are plenty of international teams who offer their services as outsourcing
testers. Whatever country you choose, there are dozens of companies.

Why does country even matter?

It's not ffte country vre are choosing. It's testing learn so its qualification
should 6e the criteria, not the location. Right?

Right and also wrong.

Yes, you are choosing the team, not the country. Yes, making location the
main search criteria is not the wisest choice. But location matters. It should
not be your first priority but it definitely has to make it to top-3 or top-5 of
your concerns. Why so?

1. You don't just choose a country, you choose an entire market. This will
affect prices, qualifications, and availability of resources. A country is
not just a location, it's the conditions of your testing team training.
Things like stable internet uptime, time-zones, and language barriers
can become a problem, which leads to:

2. Communication plays the key part in automated testing. If you have
manual and automated testing teams working simultaneously, they
should interact with each other. And don't forget about developers!
Consider time zones and language differences.

3. Costs. Looking for outsourcing companies in the US is expensive due
to high costs of human resources. The cheapest markets are Eastern
Europe, India, and China, each with varying prices, different
qualification levels, and various levels of technical expertise.

Do I choose the cheapest market?

Cost matters but it definitely shouldn’t be the main concern. It's best to
combine all the described factors, assess their importance for the project
— and go on.

For global project, communication and qualification matter most. For
smaller ones, it's okay to put cost as your top priority (doesn't mean you
shouldn't aim for good quality though).

Criteria How does it matter for the
project
(on scale from 1 to 10)?

Countries that fit best

Communication
and
management

If you develop a
security-sensitive project (like a
banking platform), that's the
most pressing issue.

If that‘s a single-purposed
mobile app, let's put 3/1O.

For big projects: closer to you.
If you are located in the US,
choose a company that has
an office or at least competent
representatives in the US

For smaller ones, where
communication is not that
high on the list, Eastern Europe
will do just fine.

Market Look at the technology you are
interested in. Let's say, you need
AI.

For AI, the big three are India,
China and the U.S, according
to CNN.

You can follow the same
procedure for any other
technology.

GHOStS Developers have different
salaries on various markets. The
lower is the salary, the lower will
be the testing cost.

India, Eastern Europe

Three takeaways from the chapter:

Automated testing is only successful if it applies principles of Agile
and DevOps. Be sure to apply these methodologies. Take a look at our
5 Tips for Agile Test Automation and a comprehensive analysis of why
DevOps Need Test Automation.

Make testing backlog available for developers — and vice versa. That
will increase transparency and simplify cooperation.

Take a look at Deloitte outsourcing survey. It will help you to define the
criteria when choosing an offshore team.

Fifth-Chapter Checklist:
If you outsource, base your choice on three criteria. Assess the market,
evaluate communication challenges, and calculate the cost.

Make sure testers and developers cooperate. It's best to start at the
very beginning of development so the product is made with
automated testing in mind.

Differentiate the team roles. Test automators should have both strong
testing and development background. When it comes to testers, they
shouldn't necessarily have programming skills so don't force them
into it.

Share responsibility. All members of your team, both testing and
development, should participate in planning and strategy building. To
avoid conflicts, set a clear definition of done but update it as the
project moves forward.

One failure. one success.
all the lessons learned

A smart person learns from other people's successes and

mistakes. We are going to describe our successful and

difficult cases. It's getting real: only real les- sons and failures

— no smoke and no mirrors.

We've already discussed what makes the most difference between a
successful automated testing project and a failed one. To make an entire
picture even more clear, we decided to share our own experience of
automated testing, demonstrating what had the biggest influence on the
end outcome.

Due to confidentiality reasons, we can't share specific client's name, but
we are going to go even further. Instead of taking just one project, we've
analyzed a few of our failures and successes and drew a common
denominator to determine a pattern of automated testing victories.

A story of a lost case
As any testing team, we did not come to the success right away. If there is
one thing you need to re- member from this book, it's a simple thought:
automated testing might not be done perfectly right away, if not
managed by an experienced team. If you don't have thorough guidance,
be ready to face shortcomings and frustrations.

Ten years ago, we started exploring automated testing. Not just for the
easiest testing cases, but actually building complex strategies and
managing big teams of automated testers. We started the experiment
with our own tool for project management — and good thing it was our
own product, and we were the only ones to bear the responsibilities of the
failure.

Overall, the process of transferring from manual to automated testing,
building strategy and managing the project took us 6 months. We
invested in hiring a professional testing architect and even added a
couple of professional automated testers to the team. It seemed that all
preparation is done right... just to see, six months later, that it wasn't.

Here we are, ten years later, with hundreds of successful cases of
automation under our belt, and with a clear understanding of what was
done wrong. Now, a quick warning: while reading this chapter, it might
seem to you that the mistakes are obvious. They're not. Don't jump to
conclusions, because it's the little "obvious" things that topple your testing
efforts.

A few quick details about the case:

Time spent: 6 months

Tested product: a project-management application, specifically designed
for custom software development by our in-house team

Goals: to automate the entire testing process, reducing the number of
manual testers to the lowest number possible

What went wrong?

Back then it seemed as if we are doing everything by the book. That's why,
when six months later we encountered a sad failure, we were confused:
what happened. However, as time passed and we got more experience in
automated testing, we began to understand what factors can either
contribute to a great success or become a reason of a failure.

Factor #1 — Unqualified leadership

As was already mentioned, it was the first complex automated testing
project for our team where we were fully in charge of the process, starting
from setting goals and building strategy, finishing with the full execution of
automated tools and algorithms.

There's a reason we started this eBook with advice on having your entire
team on board.

Our first challenge was communicating the purpose of automation. Our
QA architect was one of the very few people on the team who really
understood the necessity of automation. However, team management
failed to communicate these goals to testers, and the team saw that the
hustle is just not worth the result.

As our testers explained later, they all thought that the product will be
faster tested manually because we wouldn't have to waste time on
choosing tools, writing algorithms, and testing them.

Of course, from a short-term perspective they were completely right, but
we were looking for long-term results that we failed to communicate to
the rest of the team. That's why at the end we ended up with an
unmotivated team and unclear goals for the entire automation strategy.

Factor #2 — No cooperation with manual testers

Even though our goal was initially to switch from manual testing to
automation, we completely ignored the perspective of automated testers.
We hired an experienced automated testing architect who had spoken to
manual testers as if they already have experience in automation. Instead
of using the experience that manual testing already had with a project, we
forced them to retrain, completely ignoring their previous background.

Factor #3 — Lack of patience

The major problem we faced while working on the project was an
underestimation of the challenges we had ahead. For a complete
automation from scratch, six months are a pretty short period of time as it
is, and we planned to do everything in 3 months! Imagine the team
disappointment when we realized that this deadlines aren't going to cut it.

A story of a successful case

Even though the first serious failure really pulled the rug from under our
confidence, we understood that mastering automation is a logical step of
our QA Lab development. Of course, we couldn't stop on one unlucky
outcome. After a thorough analysis of what went wrong, we started again.

We learned our lessons

Now, when we look back at this project, it's apparent that failures we
experienced during our first case contributed most to the success of the
next one. Even though we didn't know for sure what to do to make it right,
we had a clear idea what not to do. Therefore, we weren't just blindly
experiment- ing like the last time but already knew what could the
possible roadblocks be.

During our preparational team meeting, we went through all the
documentation from the previous

case to determine what factors caused that outcome. It also proved to us
one more time just how important QA documentation is. If you have a
successful case, you might want to know how you did it — so it can be

repeated again. If you mess up, well, at least you can come back and see
what really went wrong.

That's what we did, and that's what helped us identify critical issues in our
last project. We wrote down what test cases were the biggest success and
what became the most disappointing failure. We have also saved the
records of team performance — this way it was clear who should be the
part of our next project, and who shouldn't.

Communication played a crucial part

When you are set out to have a successful project, you want to keep track
of all main automation processes. If in the failed project we mostly
depended on team meeting where discussed performed tasks and
achieved objectives, this time our priority was to collect a set of
comprehensive testing reports from each group of testers, who were
responsible for a particular type of testing.

Every weak project manager received these documentation to comply it
into a comprehensive report. Putting two hours per week on this might
seem uncalled for but realistically, these two hours save you days of later
struggle.

After you have specific documentation of your hands, the efficiency of
collective meetings doubles. You'll have real data to discuss with your
testers and management, and that improved the teamwork drastically.

If you read the entire book carefully, these insights hardly were totally new
for you — we already discussed most of them throughout the text. Let's just
go through main lessons again and make sure they really stick.

Crucial factors Failure Success

Management and
communication

No experience in managing
complex automation
processes, building strategy,
and identifying goals

Obtaining guidance of professional
QA automation architect along with
the co- operation with manual
testes.

Testing and
development practices

Weak cooperation with
developers, random choice of
testing tool. We didn't consult
development team before
writing automation algorithms.

We built reusable libraries of
functions with developers'
assistance and consult- ed them
every step along the way.

Strategy Unrealistic goals lead to the
unrealistic planning

We understood that automated
tools requires testing.
Management and
communication issues are not to
be ruled out as well.

Three takeaways from the chapter:

Make tables like the ones we did in the chapter to collect all goals for
the tool and compare possible solutions.

Use Gartner and Forrester to stay on top of all latest automation
trends and insights. Also, follow Testfort blog.

If it comes to choosing, always prefer the tool that your team already
worked with. It will make process faster and easier.

Sixth-chapter checklist
Don't rush automation. Make sure both your team and project are
ready for it.

Check whether your testing team coordinates their effort with manual
testers. Could be, they are working on the same cases without even
knowing about it.

Don't let your expectations jump too high. Ask your team manager
about possible risks and delays. If you get the everything-is-fine
answer, there is something the team is not telling you.

Give tools time for installation and optimization. It can take a week or
two. But don't take your team's word for it until you saw the reports
and the data to prove it.

The first tool you choose might not be the best for your business. It's
okay, and we'll talk about handling such situations in the following
chapters.

A checklist with tips on
how to make a successful
automated testing project

We gave so many tips that something can be easily

forgotten. That's why we prepared for you an ultimate testing

checklist. Save it, print it, put it on the wall — do whatever it

takes to always have it nearby.

You are past six chapters — congratulations! Now you know how to
approach test automation from the very beginning to the final stages of
the process.

There is one thing left. We prepared a checklist for you so you can repeat
and summarize all the key takeaways.

The success of automated testing depends on putting the right objectives.
These most often are:

● Shorter delivery delay
● Reduction of the workload
● Improving testing coverage and flexibility
● Increasing motivation and productivity of testers by making

automated execution of repetitive tasks.

Making Automation Test Plan

The testing process has its own lifecycle:

Planning

Analyzing previous projects and identifying possible risks

Assessing team resources, their skills, and possibilities

Choosing tools based on technical project specifics

Determine the automation framework

Evaluate existing manual tests and scripts so the duplication of efforts
can be avoided.

Identify the scenarios that your testing team will be automating

Planning

Prepare traceability matrix

Create and customize the automation framework

Specify the description of all testing processes

Prepare automation scripts

Planning

Test and debug automation scripts

Review the reports after scripts were created and tested, ensure all
most important user scenarios are covered.

Make changes to traceability matrix along the way.

Prepare test environment

Execution

Perform Test Run

Update Automated Framework if required Automatic Replay

Record and evaluate test results

Completion

Compare results with the initially planned workload and expected
cost-efficiency (it's called baseline)

Automate the generation of testing documentation with result
evaluation.

Setup the necessary infrastructure and develop it in the process

Test infrastructure

Make an automation lab for big projects

Automate the configuration of test means

Measure test creation and execution with color-tagged heatmaps
and weekly result reports

Control

Monitor and report the results.

There you have it, the entire process of software testing automation. Each
of them matters and impacts the end outcome greatly. Yet no matter how
important all these stages are, the most crucial one is to start automation.

To start automating, contact an experienced QA team that will share with
your their knowledge, insights, and resources. Like TestFort, a testing
laboratory with award-winning testers and QA engineers. With their
expertise and this knowledge combined, you will easily keep track of the
process of automation.

To get more insights on automated testing, go to Testfort blog. There we
publish regular insights on planning and executing automated testing.
Basically, it's a logical continuation of this ebook — more takeaways, more
expertise, more knowledge.

Your QA process deserves more than
guesswork. Let’s build it right together.

Plan a call
Start with intro talk with our Head of
Testing Department.

Testfort is a QA and software development
company with 23+ years of experience in the
market. Our team doesn't just write code or run
tests — we think like product owners. We offer
flexible engagement models because we know
one size doesn't fit all. Our team is focused on
creating impact-driven solutions with your end
goal in mind. We're not here to just tick boxes;
we're here to make your product succeed.

https://testfort.com/contact-us
https://testfort.com/contact-us
https://testfort.com

